Tirada de chapas

Las perras gordas que se lanzan en las chapas de semana santa

Las perras gordas que se lanzan en las chapas de semana santa

¡Hola a todos!

Volvemos a dar a esto de las matemáticas con una de las tradiciones más extrañas de la Semana Santa española, por lo menos en mi tierra de Castilla (aunque supongo que será más o menos igual en todas las comunidades): las chapas.

Siempre me intrigó este juego, pero de pequeño no recuerdo haber visto partidas en mi localidad natal, Aranda de Duero, pese a que mi padre insiste en que la gente apostaba (y ocasionalmente perdía) el coche o incluso la escritura de la casa. En Valladolid sé que se hacen, porque llegan estas fiestas y todo se llena de carteles anunciado partidas en bares y cafeterías, aunque nunca me había acercado. Sin embargo, este fin de semana, en el pueblo de mi novia, he podido ver partidas en los bares ya que Semana Santa es la única fecha donde las autoridades dan permisos especiales para organizar este juego tradicional (requiere de una licencia, tiene mala fama y está prohibido de forma normal).

Antes de meternos en harina con las matemáticas, diré a modo de apunte que indagando me he encontrado con que es una reminiscencia de la tradición de los soldados romanos de jugarse a los dados las pertenencias de un condenado a crucifixión. Lo digo porque imagino que muchos tendrán la misma duda que yo, a saber… ¿qué diantres tiene que ver un juego de azar con estas fechas? Pues ya lo sabéis.

En fin, para el que no lo conozca, las chapas es un juego de apuestas sobre cómo van a caer al suelo dos chapas (obvio), marcadas con caras y cruces (o lises). Hay dos clases de jugadores: uno hace de banca y apuesta una cantidad de dinero, y la segunda clase de jugadores apuesta contra ese banca. La banca gana si consigue doble cara, y sólo puede retirarse del juego si acumula tres dobles caras. En el momento en que saca doble cruz pierde (lo apostado y acumulado que llevara en esa partida) y si sale cara – cruz se repite el lanzamiento y nadie gana ni pierde.  Podéis encontrar una breve reseña en wikipedia aquí.

¿Es un juego fácil de ganar o no? Vamos a analizarlo desde el punto de vista de la banca. Para ello vamos a calcular la probabilidad de ganar en n tiradas de chapas (es decir, de ganar exactamente al cabo de 3, 4, 5 o 100 rondas).

Vamos a suponer que el jugador banca se retira del juego en el momento en que gana una partida (esto es, cuando alcanza las ansiadas tres dobles caras). Entonces tenemos:

  • n rondas con n mayor o igual que 3 (no tiene sentido tirar una sola vez o dos las chapas).
  • La probabilidad de ganar, sacar doble cara, es 1/4, la de perder (sacar cruz -cruz) es 1/4 y la de repetir o empatar en 1/2 (cara – cruz o alternativamente cruz – cara). Llamando G,E y F a ganar, empatar y fallar o perder, tenemos que P(G)=P(F)=1/4 y P(E)=1/2.
  • La última ronda que buscamos ha de ser ganada, que será cuando el jugador banca anuncie que se retira.

Entonces tenemos que lo que buscamos son las probabilidades de sacar:

chapas1

Entonces tenemos que la probabilidad buscada son todas las ramas del árbol que contengan (n-1) elementos, repartidos siendo 2 de ellos G (dos jugadas de doble cara) y el resto, (n-3), jugadas de empate llamadas E, ordenadas de cualquier forma, y que además acaben en una jugada G.

Es decir buscamos ramas de probabilidad:

chapas2

Siendo, efectivamente el primer multiplicando la probabilidad de sacar las dos jugadas de doble cara (las dos primeras G) , el segundo la probabilidad de los n-3 empates o repeticiones y la última la probabilidad de sacar la última y final jugada de doble cara.

Estas ramas del árbol aparecen en éste en un número igual al número de colocaciones de la secuencia de n-1 elementos G,E,E…. de las n-1 primeras tiradas (la última es fija y es G irremisiblemente). Se trata por tanto de permutaciones de estos (n-1) elementos con repetición, tomando las G dos veces y las E (n-3) veces.

Por tanto la probabilidad buscada son todas las ramas de esta forma, por lo que serán:

chapas3

Que es, efectivamente la probabilidad de ganar en la ronda n.

Si queremos calcular qué probabilidad hay acumulada de ganar en la ronda 3, 4,5,6  hasta la ronda infinita, es decir, qué probabilidad tengo de ganar una partida siendo banca si juego infinitas veces, hay que sumar el valor de esa expresión en n=3,n=4, n=5… hasta n=infinito.

Es decir:

 chapas4

Que no es algo trivial ni mucho menos. Es una progresión aritmético-geométrica de orden 2, ya que el numerador es una progresión aritmética de orden 2 y el denominador es una progresión geométrica normal y corriente. Resolverla es pesado pero no muy difícil. El truco está en desarrollar la serie tal cual y desarrollarla multiplicada por la razón de la geométrica (1/2 en este caso). Después se restan ambas y se agrupan por denominadores comunes. Quedan dos términos sin agrupar y el resto conforman una nueva progresión aritmético-geométrica de orden 1 (el numerador es de grado 1, vamos). Repetimos el proceso con ésta nueva y logramos obtener una progresión geométrica de la que calculamos su suma infinita. Sustituimos hacia atrás y voilá tenemos una expresión que si evaluamos en n tendiendo a infinito nos dará el valor de la serie original. ¿difícil? No, para nada. Veámoslo. Voy a calcular la suma sin arrastrar el 1/16 del principio para no enfangar el cálculo. Recordad que luego hay que añadirlo al final.

chapas5

Restando ambas expresiones obtenemos algo como:

chapas6

Repetimos el proceso para la subsuma que nos ha aparecido. Observad la iteración del proceso, en cada ronda aplicada el numerador baja un grado, de esta forma voy convirtiendo una aritmético-geométrica en una geométrica subyacente que sabemos resolver.

chapas7

Restando ambos y agrupando por denominadores comunes como antes llegamos a que:

chapas8

Ese último término entre paréntesis es una bonica progresión geométrica de razón 1/2, por lo que podemos calcular su suma infinita quedando:

chapas9

Entonces al llevarlo a infinito:

chapas10

Sustituyendo esto en la expresión de la suma y llevando la suma al infinito obtenemos que:

chapas11

Por lo que la expresión original es:

chapas12

Es decir, si juegas infinitamente, tendrás como banca 1/8 de posibilidades de ganar una vez la partida y retirarte con tus ganancias.

Como curiosidad os diré que si analizáis la expresión del principio veréis que ganar a la primera (tres veces seguidas GGG) es más difícil que ganar en 4 o 5 tiradas. De hecho, lo más probable si ganáis es que lo hagáis en la tirada 5 o 4. A partir de ahí las probabilidades de ganar la partida bajan cada vez más (por lo que la suma es convenientemente convergente).

Os dejo una gráfica con las posibilidades. Si hacéis de banca y pasáis de la quinta tirada sin haber sacado tres veces cara doble…comenzad a preocuparos….

chapasGrafico

doble cara…comenzad a preocuparos….

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s