Expliquemos bien Bayes y su Teorema

Thomas Bayes fue un matemático británico del siglo XVIII que enunció un curioso teorema de esos que son feos formalmente pero realmente muy cómodos en su aplicación. Y se basa en el análisis de las probabilidades de las causas observando los efectos.

He aquí el archiconocido y sumamente mal interpretado a veces Teorema de Bayes:

Sea la terna (W,F,P) un espacio probabilístico. Sea A1,A2 …. An un sistema completo de sucesos, y sea el suceso B. La probabilidad de que ocurra un determinado Ak condicionado a que haya ocurrido B es:

teorema de bayes

 

 

Es un teorema de esos feos, feos en su enunciado pero muy simples, como vamos a analizar, en su uso. Para ello aclaremos algunos conceptos:

  • P(A/B) significa probabilidad de que ocurra A a condición de que haya ocurrido B. Y al revés, P(B/A) pues obviamente significa la probabilidad de que ocurra B a condición de que haya ocurrido A.
  • Un sistema completo de sucesos es un conjunto de sucesos que cumplen dos propiedades que se pueden resumir así: Si consideramos todos ellos no dejamos ningún caso fuera (es decir, todos agrupan el 100% de las probabilidades, todas las opciones) y no se pisan unos con otros, es decir, no hay manera de que dos o más sucesos ocurran a la vez. Por ejemplo un sistema completo de sucesos es  DIA y NOCHE, o en un dado de seis caras que salgan PAR y que salga IMPAR; cubrimos todas las posibilidades y no se solapan. No hay DÍA y NOCHE a la vez y no hay PAR e IMPAR a la vez. Obviamente no han de ser opuestos siempre, pero pasa muy a menudo.
  • El Teorema de Bayes sirve para analizar las probabilidades de las causas una vez ha ocurrido una determinada consecuencia. Dicho de otra forma, si ha ocurrido B, Bayes te dice qué posibilidad hay de que haya sido bajo efecto o influjo de A1 o A2 o un Ak cualquiera.
  • Interpretarlo es muy muy fácil. Tenemos que primero ocurren una colección de sucesos (Ak) y luego, después de cada uno de ellos puede ocurrir B o no ocurrir. Vamos a preguntarnos qué probabilidad hay de que si ha ocurrido B hhaya sido bajo influencia de A1. Veamos el diagrama de árbol:

bayes1

Apliquemos la regla de Laplace que todo el mundo conoce, ya sabéis, la probabilidad de que pase un suceso es el cociente entre casos favorables y casos totales.

La probabilidad P(A1/B) es la probabilidad de que pase A1 sabiendo que ha pasado B. Luego la rama a favor del árbol es claramente la marcada en el dibujo.

¿Cuáles son los casos totales? Sencillo. NO es todo el árbol, dado que sabemos de forma fehaciente que B ha ocurrido. Es por eso que los casos totales son la suma de todas las ramas del árbol que acaban en B, sólo y exclusivamente esos. Es decir, P(A1)P(A1/B)+ P(A2)P(A2/B)+…+ P(An)P(An/B). Viendo el diagramas, los caminos verdes marcados en el dibujo siguiente.

bayes2

Ahora comparad este razonamiento con la fórmula del Teorema de Bayes. Realmente, es aplicar la Regla de Laplace con mucha imaginación. Numerador es la rama roja (a favor) y denominador es la suma de todas las ramas verdes (casos totales). El teorema NO viene de la Ley de Laplace (más que nada porque y para pasmo de mucha gente, el bueno de Bayes es anterior unos 50 años al genio francés), sino que se deduce del Teorema de la Probabilidad Total y la propia definición de probabilidad condicionada. Pero no negaréis que así se ve mucho mejor que saberse de memoria la fórmula, ¿no?.

Y mucho ojo, porque este teorema permite analizar cosillas que si se toman a la ligera, rápidamente, pueden dar lugar a equívocos. Por ejemplo, supongamos que un fabricante de pruebas para corroborar si se tiene una enfermedad dice que “su test acierta en las pruebas realizadas a enfermos diagnosticados en el 95% de los casos”. Ahora pregunto….

¿Detecta realmente bien la presencia de enfermedad?

Si pensáis que sí, volved a leerlo detenidamente. ¿El truco? Muy sencillo: el fabricante asegura que acierta en el 95% de las pruebas con enfermos, pero…. ¿qué sabemos de las posibilidades de acertar al aplicarlo a alguien sano? Es decir, a mi no me gustaría que me dijeran que tengo una enfermedad cuando realmente no la tengo. Éste es un punto importante, clave. Para saber si el método es fiable no basta con saber cuántas veces acierta al aplicarlo a enfermos. También necesitamos saber cuándo acierta al aplicarlo a sanos.

Es decir, si queremos saber cuán fiable es, lo que queremos es saber qué probabilidad hay de que tengamos esa enfermedad cuándo el método dice que la tenemos y qué probabilidad hay de no tenerla cuándo el método dice que no la tenemos.

¿Vemos la implicación de Bayes? Supongamos:

  • A1 es el suceso “tener la enfermedad”. A2 es su opuesto, el suceso “No tener la enfermedad”. Forman un sistema completo de sucesos.
  • B es el suceso “el test dice que tengo la enfermedad”. Y su opuesto es “el test dice que no tengo la enfermedad”.
  • Como nos faltan datos, supongamos que el test acierta, por ser generosos, también en el 95% de las veces que dice que NO se sufre dicha enfermedad. Es decir, un 95% de las veces que se ha probado con sanos, ha deducido correctamente que efectivamente está sano.

Con estos datos, podemos formar un diagrama, dejando como X  de [0,1]la probabilidad de sufrir una determinada enfermedad:

bayes3

Lo que nos deja:

bayes5

 Representando en Geogebra estas dos funciones se ven que van a la contra, cuando una sube la otra baja y viceversa. Os dejo un gif que como todos los de Geogebra pesa lo suyo y el link a la hoja dinámica. Si el gif tarda id a la hoja pinchando aquí. La hoja, si no rula, probad a hacerla funcionar como HTML5. Está configurada para mostrarse en Java.

probabilidad bayesiana2

 

La gráfica azul es la probabilidad de tener la enfermedad cuando el test dice que la tienes y la roja la probabilidad de no tenerla si el test dice que no la tienes. La barra que se mueve es la probabilidad de tener la enfermedad. Obviamente oscila de 0 a 1.

Observamos que si la enfermedad es rara (con probabilidad x muy baja, del orden de 0.05) la probabilidad de tener la enfermedad cuando el test dice que la tienes es bastante pequeña, aunque es muy probable que no la tengas si el test dice que no la tienes. Como es una enfermedad rara, entonces el test tampoco es que sirva para mucho.

Más curioso es qué ocurre si es una enfermedad plaga (con una probabilidad de x=0.95, no sé si hay plagas así…). En ese caso los papeles se invierten. Si el test dice que la tienes, es muy probable que la tengas, pero si el test dice que no la tienes…. Es muy fácil que se haya equivocado. Tampoco sirve de gran ayuda en una epidemia un test que no sirve para decir quién está libre de la enfermedad (que es lo difícil en esos casos).

 

¿es entonces un buen test? Bueno, si la probabilidad de tener una enfermedad es de un 0.2 a un 0.8 entonces sí que acierta bastante (si es que un 80% de aciertos es suficientemente bueno, ya que pensad que vamos a realizar la prueba a millones de personas ansiosas de saber su estado), pero no sé hasta qué punto hay enfermedades tan proclives a ser sufridas….

Lo que está claro es que no funciona bien con enfermedades muy raras ni con enfermedades que causen pandemias.

Tamaños del tetrabrik y un nombre equivocado… o no

Una de las cosas que más sorprenden a los chavales de la ESO es que se piensan que el mundo siempre ha sido así, y que todo ha existido de forma ininterrumpida desde hace muuucho tiempo hasta nuestros días. No es algo exclusivo de ellos, seguramente nosotros también pensábamos así cuando teníamos su edad, pero es curioso.

¿A qué viene esto? Pues a responder a una pregunta que me ha hecho un alumno hoy, a saber. ¿Por qué se llaman tetrabriks a las cajas de leche?

Es una pregunta muy interesante. Wikipediando, podéis encontrar la historia del recipiente que desplazó a los lecheros y sus botellas de cristal.

En resumen, el tetrabrik es un invento sueco (como IKEA) que en su inicio no presentaba la forma de hoy sino que era…. Un tetraedro. Y de tetraedro, tetrapak, viene la manera de llamarlo tetrabrik.  Brick es ladrillo en inglés, tetra es cuatro… muy simpáticos estos chicos con el marketing ¿verdad?.  ¿Por qué esa forma? Realmente, los construían así por limitaciones tecnológicas de la época. Resultaba tremendamente barato hacer recipientes así porque bastaba con coger una lámina de material, hacer un cilindro y doblarlo chafando sus bases como si fuera un sobre tridimensional. Ello compensó de alguna forma las desventajas que este tipo de formato tenía, como ahora veremos.

Fuente: desmotivaciones.es

Fuente: desmotivaciones.es (y sí, sabemos de dónde viene el nombre por las matemáticas y el griego)

¿Por qué se dejaron de fabricar con esta curiosa forma? Bueno, por una razón fundamental. La relación área-volumen de esta figura es mala. O eso he leído por ahí. Dicho más claramente, hace falta más material para construir un tetraedro que almacene un volumen de 1 litro, que para construir la opción lógica, un ortoedro. Así, si comparamos, para un litro (1 decímetro cúbico) haría falta un tetraedro regular de arista de 2 dm y por tanto un área de 7.20 decímetros cuadrados aproximadamente, por los 7 dm decímetros cuadrados de un tetrabrik normal de los de hoy en día o los 6 decímetros cuadrados necesarios si habláramos de un hexaedro.

pero espera…PARA UN MOMENTO. No hay tanta diferencia entre las áreas de un tetrabrik de hoy día con los tetraedros antiguos. Sí habría ahorro si los briks fuese hexaedros, es decir, igual de altos que anchos que profundos.

Lo que nos lleva a la pregunta… ¿Por qué son los tetrabrik del tamaño que son? ¿Es azar? ¿Es una conspiración?¿Es matemáticas?¿Es influencia Annunaki y de los elfos de las estrellas? Echémosle un ojo a todo esto.

Es verdad que la forma del ortoedro es superior en términos de almacenaje sobre la del tetraedro… aunque sólo sea porque permite apilar unidades de forma cómoda, cosa más peliaguda con el cuerpo de cuatro lados. Y no deja espacios entre diferentes briks. Pero eso sólo explica por qué hacerlos con esa forma. No dice nada de las dimensiones. Es más, si el ahorro de material es con el hexaedro… ¿Por qué no hacerlos con esa forma?

Yo no lo sé. Pero he trasteado un poco mareando unos pocos números, a ver qué descubría. Por tanto, lo que viene a continuación es pura especulación mía. Igual los hacen así porque le gustaban al director de ventas. Pero le he intentado buscar una cierta lógica, a ver si la tiene.

¿Os acordáis del número de oro? Aquella divina proporción que aparece en el márketing por doquier porque permite formas bellas. Nuestro amigo FI (del escultor Fidias, por cierto). La proporción áurea.

Pues aquí va a aparecer.

Imaginemos que queremos hacer un tetrabrik bello usando la divina proporción, que es, recordemos todos:

tetrabrik1

Que es la relación entre el lado y la diagonal del pentágono regular y una de los fiascos de los amigos de la secta pitagórica.

Bueno, pues queremos construir nuestro tetrabrik de dimensiones a x b x c siguiendo esto:

tetrabrik3

Es decir, con estas especificaciones:

tetrabrik4

Demos valores a estas expresiones a ver con qué valor de c (y por ende, de b y a) logramos tener un volumen de 1 litro (las dimensiones estarán por tanto en decímetros)

c b a Volumen
0.1 0.16 0.26 0.004
0.2 0.32 0.53 0.033
0.3 0.48 0.78 0.114
0.4 0.64 1.04 0.271
0.5 0.81 1.31 0.530
0.62 1.00 1.62 1.001
0.7 1.13 1.83 1.453

Con unas dimensiones de 0.62 x 1.00 x 1.62 dm logramos tener un litro. No merece la pena irse a 0.7 x 1.13 x 1.83 porque ahí el volumen ya es bastante más de un litro… casi casi estamos ya en el litro y medio.

Pues ya está, ¿no?. Los fabricantes quieren envases de 1 litro. Pues no. Los fabricantes quieren (o deberían querer) bonito, de 1 litro y barato. Y no hemos garantizado que nuestro brik sea barato ¿Qué debemos hacer? Pues relajar un poco las estrictas condiciones del problema, que es algo muy matemático. Ya tenemos que el lado pequeño ha de ser 0.62 dm, ¿no? Bueno, pues calculemos las dimensiones de los otros dos lados. Nos saldrán muy parecidas a las obtenidas aquí, porque queremos un volumen ligeramente mayor.

Alguien podrá decir, avispado él, que es una bobada dejar dos parámetros como b y a libres, porque nos complica el problema, y que sería más lógico dejar c y b fijos y aumentar un poco el tamaño de a. Bien, es una opción. Pero yo dejo los dos parámetros libres porque quiero imponer otra condición como fabricante. Ahora que ya sé cómo hacerlos bonitos usando la proporción aurea… quiero que usen la menor cantidad de material posible, aún a costa de que salgan un pelín más feotes. Quiero, por tanto, que su área sea mínima.

Lo que conlleva derivar el área buscando el punto donde es mínima.

Reescribimos la fórmula del área imponiendo que el volumen ha de ser 1 decímetro cúbico y que el lado c ha de ser 0.6 decímetros y queda:

tetrabrik5

Si derivamos e igualamos a cero obtenemos un mínimo en…

 

tetrabrik6

Entonces b=1.27 dm y a=1.27 dm

Lo que nos lleva a que las dimensiones serán de 1.27 x 1.27 x 0.62 decímetros. Qué lástima. No parece que la optimización del área a usar sea un criterio empleado…Comparémoslas con las de un tetrabrik normal y corriente real y con las medidas obtenidas para un brik áureo:

CASO DEL BRIK CON PROPORCIÓN ÁUREA

c b A Volumen
0.62 dm 1.00 dm  1.62 dm 1 litro exacto

 

CASO DEL BRIK OPTIMIZADO

C b a Volumen
0.62 dm 1.27 dm 1.27 dm = 1 litro exacto

 

CASO DEL BRIK REAL

c b A Volumen
0.62 dm 0.91 dm 1.93 dm > 1 litro (1.09 litros)

 

Conclusiones: Parece ser que el tamaño del brik está un poco más relacionado con la proporción áurea o el deseo sencillamente de hacer un embalaje bonito que en lograr la eficiencia en el área de material empleado. No obstante, tampoco hay tanta diferencia en este aspecto, ojo, que los suecos bobos no son. De hecho:

Brik áureo 6.51 dm cuadrados
Brik óptimo 6.37 dm cuadrados (mínimo)
Brik real 6.62 dm cuadrados

La diferencia es de sólo unos 0.25 decímetros cuadrados de material, es decir, aproximadamente 5 x 5 centímetros. Muy poco. A cambio, el brik real cumple ser más armonioso con el ideal del áureo. Es más bonito que el óptimo. Y tiene un volumen un poco mayor que 1 litro.

Por último, hay que tener en cuenta además que el brik real está sobredimensionado en su altura para proteger el contenido de apilamientos excesivos, golpes, que el brik se chafe o arrugue, (y esto por apilarlos suele ocurrir por arriba). Asimismo, para que no explote por cambios en el volumen de su contenido, que como todo líquido tiende a variar de volumen con cambios en la presión o la temperatura. (y si no, meted una botella de agua en el congelador, veréis que risa… )

Para que quede constancia de lo que digo, sería algo así:

CASO DEL BRIK REAL SIN ALTURA EXTRA DE SEGURIDAD

c b A Volumen
0.62 dm 0.91 dm 1.77 dm 1 litro exacto

Ello explica (en parte) que tenga ese valor de altura. Realmente da un volumen de 1.08  litros. Con 1.6 centímetros menos, saldría un volumen de 1 litro redondo. Pero eso nos sigue dejando unas dimensiones teóricas de 0.62 x 0.91 x 1.77 dm. Un valor bastante cercano al áureo aunque no idéntico.

En definitiva, no sé exactamente por qué los tetrabriks tienen estas dimensiones. Tiene que haber algún otro factor que no hayamos visto como el material que se pierde en los dobleces (quizás sea la clave de que quede más delgado, optimizar todo el material, incluyendo los dobleces que aquí he obviado), aunque está claro que su diseño es más una concesión a que quede bonito que al ahorro en sentido estricto del material. Si no fuera así, nuestros briks serían más anchos (1 cm) y más bajitos.

Por lo menos dejaron de fabricarlos con forma de dado de rol de 4 caras. Algo es algo.

Consuelo matemático para solitarios en San Valentín ( o no…)

Proposición para animar a aquellos que no tienen pareja o que se sienten tristes en San Valentín (¿de verdad hay gente así?). En fin.

Sea P el conjunto de las personas del mundo. Sea ♡ una aplicación tal que:

valentin1

el problema es que nadie te garantiza que si esto se cumple, se vaya a cumplir que: valentin2

¿O sí? Porque de esa respuesta depende que esto sea un consuelo o no, claro….

Espero os guste esta pequeña coña en este tan, tan, tan pastelazo día ^^

Integrales (aparentemente) mal hechas…

Una de las cosas que más se olvida es que si bien la derivada de una función es única (salvo formas de expresarla, como la de la tangente por ejemplo), una integral es una operación que tiene por resultado muchas, muchas, muuuchas soluciones. Tantas como valores podamos dar a una constante, de hecho. Una integral tiene infinitas soluciones.

Una visión intuitiva del asunto es que la integral es la operación contraria a la derivación  y que la derivada de una constante es cero. Por eso escribimos siempre la (olvidada) contante de integración al acabar de operar:

integralesA

Y la solución es F(x)+1, F(x)+3/4, F(x) + 1.000.000…. lo que queráis.

Esto conlleva que la integral de una función sea un abanico de funciones parecidas, pero no iguales. Funciones que se diferencian en el valor que pueda tomar la dichosa constante de integración (La C). Por ejemplo.

integralesB

Comprobamos que efectivamente si hacemos el proceso inverso, esto es, si derivamos, el valor de la C es irrelevante. Puede valer 15 o Pi o un millón de trillones. Al derivar se anula, y el resultado vuelve a ser la función que antes integramos:

integralesC

Esto es una perogrullada que no obstante a veces la gente olvida. A un compañero en carrera se le olvidó la constante de integración al final del ejercicio y a pesar de que el resto estaba bien desarrollado le pusieron un cero. La excusa del original” profesor era que le había dado una solución de las infinitas que había (pues infinitos valores toma la dichosa C que olvidó) y en correspondencia le ponía la parte proporcional de la nota.

Sin embargo, este tema está más que trillado ¿A qué viene esto? Bueno, pues a que tiene más importancia de la que parece. En funciones polinómicas, la  C es lo que diferencia una solución de la integral de otra, pero mantienen todas ellas la misma “forma”, el mismo “cuerpo”. Sin embargo, esto no siempre es así cuando nos alejamos un poco de ellos, y nos metemos con las integrales de funciones trigonométricas, por ejemplo. Y ahí es donde quiero ir a parar.

Consideremos este ejemplo:

integralesD

Esta integral se puede resolver de varias formas. Podemos aplicar un sencillo cambio de variables (seno y coseno son función y derivada respectivamente) o se puede resolver considerando que es casi la expresión del seno del ángulo doble:

Es decir:

Primera forma:

integralesE

Segunda forma:

integralesF

Y aquí es donde les empiezan a veces los problemas. Saber si está bien una solución, la otra o las dos, regado con el hecho de que a la gente se la taladra en clase con que NO se olvide la constante de integración. Y normalmente nadie lo hace… hasta que se acaba la integral y hay que usar la expresión resultante para algo.

Pero volvamos a la comprobación de si ambas expresiones son solución de la integral. Normalmente, un razonamiento que se tiene es caer en la idea de que si ambas soluciones lo son, entonces su resta ha de ser cero, ya que…. ¡son la misma cosa!

Pero entonces ocurre el chasco, ya que este razonamiento es erróneo. Enseguida destapamos la liebre, pero primero veamos qué pasa si seguimos adelante con él. Por tanto, restemos ambas soluciones, a ver qué pasa :

integralesG

La conclusión (errónea, insisto) que se extrae de ésto es que como ambas soluciones restadas NO dan cero, sino 1/4, es que hemos metido la pata en alguna de las soluciones y que una está mal. Comienza entonces una búsqueda del fallo…. En vano.

¿Dónde está el truco? Pues que las dos soluciones son perfectamente válidas PERO sus constantes de integración NO tienen por qué tomar el mismo valor en ambas a la vez. Por tanto, no se pueden simplificar alegremente una con la otra. Para empezar, no debería haberla llamado C en ambas expresiones, pero esa es una de las manías que más abundan en estos campos, que llevan a errores de este tipo.

De hecho, si las llamamos C y K, por ejemplo, y considerando que no es necesario que C=K, se llega a que:

integralesH

Es decir, ambas soluciones coinciden si observamos que la constante de una de ellas será un cuarto más que la constante de la otra. Pero ambas son soluciones de la misma integral.

Podemos verlo gráficamente:

integrales1

Cuando ambas constantes son iguales, cero en este caso, las soluciones se diferencian en una cantidad que es constante. ¿Adivináis cuánto es esa diferencia? Exacto, en este caso es 1/4.

Si corregimos este hecho queda que…

integrales2

Las dos gráficas coinciden cuando la constante de una y otra se llevan 1/4 entre sí. (La roja tiene de C=0 y la azul superpuesta C=1/4)

La roja no se ve, tapada por la azul.

Esto mismo ocurre con los polinomios y con cualquier integral, lo que pasa es que con las funciones trigonométricas es muy común que aparezcan soluciones aparentemente diferentes en forma pero que en el fondo sean la misma. La culpa la tienen la cantidad de formas que hay de resolverlas usando la trigonometría. Así que no os asustéis cuándo resolváis integrales de este tipo y vuestras soluciones no coincidan de forma clavada con las de vuestros compañeros…. ¡puede que hayáis seguido caminos alternativos!

21%…. ¡y unas narices!

Estos días han estado promocionándose (por lo menos en Valladolid) campañas tipo “Día Sin IVA”. Últimamente se juega mucho con este concepto en publicidad. Recordemos, por ejemplo, la campaña de “Yo No Soy Tonto” de cierta compañía dedicada a vender productos electrónicos, que es muy, muy asidua a este tipo de campañas de cuando en cuando. Esta vez ha sido El Corte Inglés, pero vamos, que tanto da unos que otros.

¿Por qué? Pues porque hay truco. Oh, sí. Si no, no sería verdadera publicidad. Y si hay algo cierto en este mundo es que nadie da duros a pesetas.

¿De qué estoy hablando? Pues en seguida lo podréis ver bien claro. Seguidme la corriente.

Pensemos esta sencilla cadena de razonamientos: El IVA en España es, considerando el tipo general (el frecuente en productos que no sean de primera necesidad), del 21%. En consecuencia un producto se ve encarecido en ese porcentaje al aplicarle dicho impuesto. Por tanto, si deseamos abaratar ese producto eliminando ese sobrecoste, basta rebajarlo un 21% de su precio final.

….

….

….

Si os habéis llevado las manos a la cabeza leyendo esto, enhorabuena. No sufrís de anumerismo. Si por el contrario os ha parecido de lo más razonable, deberíais prestar un pelín de atención a lo que viene a continuación. En serio. Que no te tomen por tonto, como dicen en la cadena esa de electrónica.

Cuando se aplica el IVA, se aplica a un precio pre-IVA. Es decir, el 21% es el 21% de ese precio ANTERIOR al añadido del impuesto. Esto que parece (es) una perogrullada, es el truco en el que se intenta hacer caer al consumidor. Porque, de la misma forma, el ahorro del 21% debería ser el 21% del precio CON IVA. Es decir, un 21% de una cantidad SUPERIOR.

Es decir, en consecuencia, si subes un producto un 21% y luego lo rebajas un 21%…te queda más barato de lo que estaba inicialmente, porque el segundo 21% es más grande que el primero, en valor nominal.

¿No está claro? Suena raro, pero es fácil (y una de las cosas con las que más me río con los de 1º y 2º de la ESO). Quizás con un esquema:

MARKT0

¿Aún no está claro? Veámoslo en profundidad. Al incrementar el precio se le añade el 21%, pero el 21% del precio inicial (el círculo azul). Sin embargo, al rebajarlo, se aplica un 21% de lo que se tiene en el momento de aplicar dicha rebaja, que es el circulo verde. Evidentemente, el 21% de una cosa es mayor que el 21% de una cosa más pequeña (el 21% de un elefante es mucho más que el 21% de una hormiga) ya que un porcentaje es como su nombre indica, el número de trozos que cogemos de algo cuando hemos dividido ese algo en 100 pedazos.

Por tanto lo hemos incrementado el 21% de lo azul (pequeño) y lo hemos rebajado el 21% de lo verde (algo más grande). En consecuencia, el círculo final (el rojo) es diferente al inicial (azul). Vamos, que no coinciden. Es una prueba de que un porcentaje NO se compensa (o se anula) con otro idéntico.

Bueno, y ¿Esto qué tiene que ver con los anuncios del día sin IVA? Pues muy simple. Las empresas no son idiotas (ni tontas) así que saben perfectamente lo que estamos aquí contando. Por eso, en las promociones en las que descuentan el IVA realmente NO te descuentan un 21% del producto, que sería el IVA y algo más, sino un porcentaje menor que corresponde con el 21% de Impuesto al Valor Añadido. Es decir, descuentan al círculo verde un porcentaje que haga que el rojo sea igual que el azul. Y ese porcentaje es más pequeño del 21%, estando en torno al 17,4%.

¿De donde sale ese 17.4%? Muy simple: Al aplicar el IVA a un producto que cuesta X euros, pasa a costar 1.21X euros. Luego para que vuelva a ser otra vez X habrá que multiplicar a 1.21X por la inversa de 1.21, que es 1/1.21 ( y así cancelar ambos números y que sobreviva la X). Pero 1/1.21 es 0.8264, que corresponde a un porcentaje de 82.64%. Es decir, hay que pagar sólo el 82.64% del producto para compensar esa subida del 21% anterior. Y he aquí por último que si he de pagar el 82.64%….¡¡ es que me rebajan un 100%-82.64% = 17.36%!!

Lo curioso es que realmente las compañías no mienten en los anuncios. Sencillamente dejan que el cliente establezca una relación errónea entre descuento ofertado y 21%. Pero en ningún momento dicen “ahorro del 21% del PVP” (Precio de Venta al Público). Al loro con estas imágenes:

markt1

Que dice realmente que te van a rebajar el 21%…. correspondiente al IVA. No aclaran en el mismo tamaño de letra el 21% de qué. Si del precio inicial antes del impuesto o al PVP. Muy astutos.

Porque son astutos, no tontos. Si nos fijamos en la letra pequeña del anuncio pone “claramente”:

markt2

Literalmente:

“Descuento equivalente al importe del IVA aplicable a cada producto. Todos los productos incluyen IVA (…). Ejemplo para un producto de 500 € el IVA aplicable a cada producto será de 86.78 €”

Fijaos que el 21% de 500 € NO es 86.78 €, sino 105 €. La cantidad a descontar es el 17.356% de 500 €.

El precio que tenía el producto antes de impuestos era de 500 – 86.78 = 413.22 €, cuyo 21% es, ahora sí, los 86.78 € (redondeando al céntimo de euro).

Asi que lo dicho. Que no os tomen por tontos. No mienten, pero dejan que nos creamos una mentirijilla. Dejan que relacionemos IVA = 21% con SIN IVA = -21%. Cosa que acabamos de ver, no es cierta.

Probabilidades en la circunferencia.

Vamos allá con este problema que se me ocurrió este fin de semana, motivado por una conversación de coche, de esas que te picas, te picas… y tienes que resolverlo, claro está.

El enunciado es éste:

Colocamos tres puntos al azar sobre una circunferencia de radio R. ¿Qué probabilidad hay de que formen un triángulo acutángulo?

NOTA: es el mismo problema que suponer “dados dos puntos sobre una circunferencia, ¿qué probabilidad hay de que al colocar un tercero se forme un triángulo acutángulo?

SOLUCIÓN: HAY DOS FORMAS, QUE EN EL FONDO SON LA MISMA, LA COMPLEJA Y LA SIMPLIFICADA.

SOLUCIÓN COMPLEJA:

Partimos de la construcción siguiente: dada la circunferencia colocamos al azar los dos primeros puntos, vértices del triángulo.

circulo1

Vamos a ir al caso límite para colocar el vértice que queda, A. Para ello, hay que procurar que se forme un ángulo menor que 90º en B o C dados, al unirse con A. Entonces construimos el andamiaje necesario para “acotar” esta posibilidad, levantando perpendiculares por C y B:

circulo2

La zona válida es el arco que va desde G hasta E. Es decir, la zona marcada en rojo. Esa será la solución. Cualquier punto A en esa zona genera ángulos en C y B que serán menores que 90º.

Se puede comprobar por ejemplo en esta imagen (el gif hecho por Geogebra es una animalada de 8 Mb).

circulo3

Alguien puede pensar  “Bueno, sí, ahí el ángulo de B y C es menor que 90º, pero. ¿Qué pasa con el otro vértice?

La respuesta es que NO pasa nada. Es un ángulo inscrito. Y ese ángulo inscrito valdrá la mitad que el ángulo central que abarca el arco desde B hasta C. Como ese central es claramente menor de 180º, el inscrito será también menor que 90º.

Precisamente por eso la solución NO incluye el arco “corto” entre C y B. Porque ahí el ángulo inscrito SÍ que es mayor que 90º y el triángulo formado sería obtusángulo.

Queda hacer cuentas. Qué probabilidad representa esa zona roja. Llamemos “d” a la distancia entre los dos vértices que hemos colocado primero. Coloquemos algunos ángulos y echemos cuentas

circulo4

Como se puede apreciar beta=180-2(alfa) lo que conlleva que la zona de aceptación (la zona favorable) sea de esos ángulos precisamente. Como hay en total 360º donde colocar el vértice A del triángulo, entonces la probabilidad es:

circulo5

Con el ángulo alfa siempre entre (0 y 90º). Hay un caso especial, que ésta fórmula por tanto no contempla, que es cuándo alfa es cero. Ello conlleva que C y B serán diametralmente opuestos y por tanto el ángulo que forme A con ellos será de 90º por ser el central un ángulo llano. En ese caso, la probabilidad de que formen un triángulo acutángulo es de cero.

Buscamos poner esta expresión en función de “d”, distancia entre dos vértices Cy B y “r”, el radio. Tirando de trigonometría básica es sencillo llegar a que:

circulo6

Dando la expresión en radianes.

CONSTRUCCIÓN SENCILLA/SIMPLIFICADA.

Basta con considerar la figura que se forma al colocar dos puntos C y B al azar y trazar sus diámetros. Después sólo hay que pensar a la hora de analizar dónde debe caer el tercer vértice A. Analicemos la figura:

circulo7

Pensemos que el ángulo inscrito de centro en C que abarque de B a F será de 90º porque el ángulo central que abarca es de 180º.Entonces, si coloco el vértice A entre F y B tendré un ángulo más abierto que ese, luego será de más de 90º (colocad un punto cualquiera debajo de C veréis cómo el ángulo de centro C que una B con A será más de 90º). Luego esa zona no vale.

Alternativamente, tampoco vale la zona de C a D por análogo razonamiento, pero esta vez considerando cómo sería el ángulo centrado en B. Dicho ángulo es de 90º si abarca desde D hasta C, y será mayor si va a un punto colocado entre C y D.

Por tanto en las zonas siguientes marcadas en rojo NO se formará un triángulo acutángulo y por tanto en la zona verde es donde SÍ que se formará dicho triángulo:

circulo8

A partir de ahí el razonamiento de cálculo es el mismo. El ángulo central del sector verde vale beta=180-2(alfa) y se llega a la misma solución que con el método anterior (en el fondo es el mismo, razonando más y dibujando menos).

¿El Último Teorema de Fermat solucionado por Homer Simpson?

Buenas y casi, casi, feliz año nuevo.

Resulta que estas navidades me han regalado un librito que condensa mi amor a las matemáticas con mi amor al frikismo en estado puro. En concreto, a un frikismo muy particular. Me refiero a Los Simpson, esa gran enciclopedia social del siglo XX (y XXI).

En concreto me ha regalado una joya titulada “Los Simpson y las Matemáticas” de Simon Singh. Apenas he comenzado un par de capítulos y ya puedo decir que mi anterior entrada relacionada con el Frinkaedro era sencillamente rascar en la capa de enjundia que tiene la temática en sí. Esta entrada es un homenaje al libro y una gamberrada con todas las de la ley. Asi que antes de nada, por favor, si no conocéis el teorema más famoso de Fermat, pinchad aquí antes de seguir. Gracias.

¿Qué tiene que ver Homer con dicho teorema? Pues que es una de las múltiples referencias matemáticas que plagan la serie, y encima en capítulos míticos, aquellos que tipejos como yo nos sabemos prácticamente de memoria, y no esos nuevos tan raros que han abandonado el espíritu original de la serie y perdido parte de su mordiente. Pero me estoy desviando, sin duda. Centremos el tema y el capítulo.

Según “Los Simpson y las Matemáticas”, en el capítulo en el que Homer intenta emular a Edison, en la pizarra que Homer escribe al intentar inventar algo, escribe esto:

homer y fermat

Centrémonos en esta expresión:

fermat 1

Muchos diréis: ¿y qué? Pues una igualdad como cualquier otra. Vale. Coged una calculadora. Haced la prueba. A ver qué os da.

A mí me da en mi vieja Casio: 6.397665635 exp 43 al hacer la suma de potencias y lo mismo al introducir el término de la derecha. O sea que coinciden. O si lo preferís haced la raíz doceava de la suma de la izquierda. Os dará irremisiblemente el 4472.

Posiblemente estéis pensando: “Pues vaya rollo las mates. Hemos hecho una cuenta”. Y de un número monstruoso, por cierto.

Y tendríais razón….. si no fuera porque….

…..Si no fuera porque Fermat enunció en el siglo XVII que no existen valores enteros para x,y,z que verifiquen para un n entero mayor que 2 la expresión:

fermat 2

Dicho a lo bruto, para que nos entendamos. ¿Recordáis el Teorema de Pitágoras? Bueno, pues si cambiamos el exponente de 2 de ese teorema a cualquier otro número natural mayor, no hay solución posible con enteros. Lo asombroso es que esto que parece tan trivial y tontorrón tardó más de 3 siglos en demostrarse. Concretamente lo demostró Andrew Wiles en 1995.

Pero volvamos a la pizarra de Homer… Hay algo que no cuadra entonces. ¿Han encontrado los guionistas de Los Simpson un contraejemplo que determina que Fermat se equivocaba? ¿Es el Teorema una patraña? ¿Está Homer en lo cierto?Parece que sí, pero…. En el fondo es que la calculadora nos engaña.

La expresión que Homer ha escrito no es verdad. Ambos términos no son iguales. Son sólo parecidos. Tan parecidos, que la calculadora no puede mostrar en su pequeña pantalla la diferencia entre ambos números y nos parecen iguales. El resultado que nos ha mostrado es 6.397665635 exp 43, que significa 6397665635 y 34 ceros detrás. Un número MUY grande. El otro término aparentemente sale igual, pero lo que ocurre es que en alguna cifra de las 34 que no caben en la pantalla ambos resultados difieren. Es como si tu calculadora trabajara mostrándote sólo a partir de la cifra de los millones. Entonces en esa calculadora la operación tres millones más noventa mil te daría lo mismo que tres millones más novecientos noventa y nueve mil novecientos noventa y nueve.

Lo correcto sería que Homer hubiera escrito:

fermat 3

 Ya que sí, efectivamente, ambos términos son tremendamente parecidos. De hecho si lo hacemos con un ordenador y tomamos un número considerable de cifras significativas, se descubre el pastel: concretamente podéis comprobar que:

fermat 4

O sea, parecido…pero no igual. No exacto.  El honor de Fermat sigue intacto.

Es fácil aproximar soluciones al Teorema de Fermat con ayuda de un ordenador y paciencia. Yo por mi parte lo he hecho con un script de Geogebra trabajando con unas 15 cifras decimales y aunque no he apurado tanto (he usado una cota de error de 0.001 o similar en la mayor parte de los casos, para no tardar tanto), he obtenido también una serie de soluciones “casi casi” (que evidentemente NO son soluciones, puesto que NO son exactas). Por ejemplo:

X Y Z aproximada Z exacta N
2845 3478 3503 3502.9999 12
16281 18211 18566 18566.0092 12
4047 5475 5487 5486.9936 12
3134 2975 3248 3248.0058 12
1533 1122 1543 1542.999993 9
2774 4310 4319 4319.0005 9
3124 4403 4492 4492.000039 6
2176 1356 2339 2339.0091 3
1155 703 1236 1235.9990 3

Que si comprobáis con la calculadora comparando ambos términos del Teorema de Fermat son muy muy malas aproximaciones, ya que en la pantalla se llega a apreciar que dan resultados ligeramente diferentes. La solución de Homer no es tal (es imposible que lo sea) pero sí que es una muy muy muy muy buena aproximación. Mucho mejor que cualquiera de estas mías. De hecho, yo he obtenido las mías en pocos minutos de simulación, pero cuando he querido bajar la cota de error por debajo de las diezmilésimas, no ha habido forma en media hora de que el PC encontrara alguna en el rango entre 3 y 10000 para las bases y fijando el 6 (por ejemplo) como exponente. Imagino que el ordenador redondea y pierdo la posibilidad de apurar tanto como los guionistas de Los Simpson. Por tanto me he conformado con algunas peores que las de Homer. (También he evitado hacer trampa, descartando soluciones como 9990 elevado a la doce más 2 elevado a la doce, que evidentemente es una cuasi solución ya que ambos números son muy dispares entre sí. He buscado soluciones parecidas a las de la pizarra del capítulo.)

Evidentemente la gracia de los guionistas estaba en sacar una expresión que pudiera traer de cabeza a aquellos que la comprobaran con la calculadora sin tener en cuenta el grado de precisión de la misma. Que no es poco.

El resto de la pizarra tiene curiosidades referentes a la densidad del universo y la necesidad de que en base a ésta el Universo explosione o implosione (lo que lleva a sendas explosiones en el hogar de los Simpson y a que Homer cambie el > por un <, pero eso ya es otra historia. Otra historia que por cierto viene en el magnífico libro del que os hablaba al principio del post y que sinceramente, os recomiendo.