El método de Descartes

Cómo le debía gustar la palabrita “método” a René Descartes, oigan….

Sigo con la oposición, centrándome estos días en la niña fea del temario. Aquellos que nadie se prepara nunca porque no gustan. ¿A nadie? No, qué va. A mí, de hecho, me encantan. Hablo de los temas de Historia de las Matemáticas.

Estos días estoy con la historia del cálculo diferencial e integral, es decir del Análisis desde que Euler los junta a ambos en una sola disciplina. Y me he topado con algún método curioso de esos que se usaron para hacer las cosas que hoy en día calculamos con derivadas o integrales.

Imaginaos que queréis calcular la ecuación de la tangente de una función en un punto. No de una función especialmente difícil ni rara. Un seno. Un logaritmo. Una función racional. Esas cosas.

Cualquier alumno avezado de bachillerato se irá corriendo a derivar la función y evaluarla en el punto de tangencia porque como todos sabemos, la pendiente de la tangente es realmente el valor de la derivada de la función en dicho punto. El resto es coser y cantar, sólo hay que completar la ecuación punto pendiente de la tangente con las coordenadas del punto y el valor de la pendiente (es decir, el de la derivada).

No obstante estas formas de actuar se las debemos a dos monstruos con mayúsculas de la ciencia. Leibniz y en menor medida, Newton. Ellos dos se rumiaron la idea de derivada e integral como entes relacionados (de acuerdo, incluiremos también a Barrow y a más gente) y alejaron definitivamente el análisis funcional del estrecho corsé de la Geometría, al que le habían sometido desde Arquímedes hasta Descartes, que es el prota de este post. (¿Os suena el Discurso del Método de clase de filosofía? Pues el tercer libro del Discurso se llama… Geometría. Deberían explicarlo en mates, ¡leñe!)

El caso es que antes de que Leibniz y Newton, Newton y Leibniz y sus sucesores  nos pusieran las herramientas actuales de trato con funciones en las manos, cada cual se creaba herramientas apropiadas para cada problema por separado. Uno de los problemas era el de calcular la tangente de una curva en un punto sin usar derivadas ya que… ¡bueno, no se conocían!. Y una de las soluciones es la de Descartes. He aquí:

Consideremos que queremos la tangente en P de una curva f(x). Tomemos una circunferencia auxiliar de centro (C,0) con C cualquiera y radio de C a P. Es de suponer que la circunferencia será secante a la función en dos puntos. Arrastremos el centro C hasta que logremos que la circunferencia sea tangente a la curva en P. Entonces, podemos trazar la tangente a la circunferencia en P (es sencillo, será perpendicular al radio CP) y a su vez será tangente a la curva en P.

 

Un original método que analíticamente consiste en considerar el sistema formado por la ecuación de la circunferencia y la propia función y forzar a que sólo tenga una solución, en P. Con eso ya se tiene la coordenada exacta de C y el radio. Y con el vector del radio, sacar el perpendicular (el de la recta tangente) es inmediato. ¡Y sin derivar!

Os dejo en Geogebra un applet con el que podéis practicar sintiéndoos como Descartes. Analíticamente el método no es  cómodo ni mucho menos (depende de la dificultad a la hora de forzar una solución única en el sistema) pero es muy curioso y muy ingenioso. Como siempre, pinchad o en la imagen o aquí:

metodo de descartes 1

Veamos analíticamente cómo funciona. Por ejemplo, hallar la tangente de:

metodo de descartes 2

en el punto P(2,2).

Se trata de solucionar el sistema formado por la circunferencia de centro C(C,0) y radio CP y la propia función, forzando que la solución sea únicamente en x=2 (coordenada de P).

Es decir:

metodo de descartes 3

El centro es C(3,0), el radio es el vector PC(1,-2), luego la pendiente de la recta del radio PC es  -2. Entonces la perpendicular tendrá pendiente 1/2 y pasará por P(2,2), luego será la recta       y-2=0.5(x-2), o lo que es lo mismo

Tangente es: Y=0.5X+1